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• A novel approach to develop spatiotempo-
rally resolved emission inventory from
commercial cooking.

• Temporal emission characteristics of res-
taurants and canteens were first discov-
ered.

• Model performance of PM2.5 and O3 simu-
lation was improved with the new inven-
tory.

• Impact of commercial cooking on PM2.5

and O3 was assessed in an urban district
of China.

• Targeted control measures in areas with
high commercial cooking density will
lower ambient PM2.5.
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Commercial cooking (CC) is an intensive near-field source contributing to ambient PM2.5 and O3 concentration in
urban areas. Compilation of CC emission inventory has been challenging due to the dynamic variation of the emission
sector,which has resulted in data deficiencies including underestimated quantity and poor temporal-spatial resolution.
In this study, we have developed a methodology that integrates existing emission statistics with online oil fumes mon-
itoring (OOFM) data to create a highly spatiotemporally resolved emission inventory of CC. The new emission estimate
differs from legacy inventory in emission quantity and temporal pattern. Using the emission data, the impacts of CC
emission on local PM2.5 and O3 were evaluated using WRF-CMAQ and model-monitor data fusion tool of SMAT-CE
in Shunde, China. The OOFM data-assisted emission inventory led to improved model performance for both model-
predicted PM2.5 and O3 concentrations. The simulation results using the new inventory data showed that the CC emis-
sions contributed 1.25±2 μg/m3 of PM2.5, and accounted for 24±1 % of PM2.5 concentration derived from local an-
thropogenic emissions. Moreover, a higher contribution of CC to PM2.5 was predicted in areas with elevated CC
emissions, while the contribution to O3 was insignificant.
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1. Introduction

In recent years, atmospheric pollution caused by fine particulate matter
(PM2.5) and ground-ozone (O3) (Burnett et al., 2018; Lu et al., 2020) has
drawn scientific attention worldwide due to their negative influence on
air quality and human health (Burnett et al., 2018; Xiao et al., 2022).
With the effective implementation of control policies for major pollution
sources (e.g., industry, dust and transportation) (Yu et al., 2019; Zhou
et al., 2020; Zhu et al., 2019), the annual PM2.5 concentration in China de-
creased sharply by 30.56 % between 2013 and 2015. However, the declin-
ing trend has slowed down significantly (Clean Air Asia, 2021; Tan and
Mao, 2021) since 2016 with an average annual decline of <10 %
(Fig. S1), and the O3 levels have shown a rising trend particularly in
many megacities in summer (Li et al., 2020a; Li et al., 2020b). In support
of further mitigating PM2.5 and O3 pollution, except for the major sources,
it has been proposed to strengthen control of residential emission sources
from national to local scale. As one of the most important residential
sources, cooking oil fumes (COF) is a complexmixture of PM2.5, volatile or-
ganic compounds (VOCs) and other carcinogens (Kabir and Kim, 2011; Lu
et al., 2021; Xu et al., 2020), whichmakes it an intensive contributor to the
ambient PM (ElSharkawy and Ibrahim, 2022; Robinson et al., 2018) as well
as O3 (He et al., 2020; Xing et al., 2021). Commercial cooking activities, a
major contributor to COF, emitted higher concentration levels and more
complex components of COF than that of family cooking (Lu et al., 2019;
Sun et al., 2022). Thus, revealing the emission characteristic of commercial
cooking and associated impact on both PM2.5 and O3 is critical for pollution
regulatory management.

A high-resolution and constantly updated emission inventory plays an
important role in assessing the impact of emission sources on ambient air
quality (Crabbe et al., 1999; Kurokawa andOhara, 2020). Currently, the de-
velopment of commercial cooking emission inventoriesmainly relies on the
activity levels from annual statistical data, technical manuals (e.g. Technical
manual for the preparation of city-level air pollutant emission inventory 2017),
or surveys (Jin et al., 2021; Liang et al., 2022; Wang et al., 2018), which
had a long data renewal period and thus failed to reflect the fast-changing
emission pattern caused by the rapid growth of catering industry (Yu
et al., 2020). Besides, detailed temporal-spatial distribution data were sel-
dom provided, causing difficulty in the emission variability analysis (Liu
et al., 2018a) and regional air quality modeling (Sturm et al., 1999).
These shortcomings make challenges in improving the accuracy of cooking
emission inventory and accordingly limit its application in quantifying the
impact on ambient air quality. Various kinds of online monitoring data,
which can offer real-time emission information and capture detailed emis-
sion characteristics, have been widely used to estimate emissions from
other sources (Sun et al., 2021; Yang et al., 2021; Zhang et al., 2018). How-
ever, similar data have not been applied to compile commercial cooking
emission inventory. In addition, previous studies of commercial cooking
impact assessment were mainly concentrated on indoor air quality (Kang
et al., 2019; Lee et al., 2001; Militello-Hourigan and Miller, 2018;
Seaman et al., 2009), whereas less attention has been paid to outdoor air
quality. Our understanding of the commercial cooking impact on the sur-
rounding environmentwas currently limited to its contribution to the atmo-
spheric organic aerosol (Liu et al., 2018b; Siouti et al., 2021; Zhang et al.,
2021), lacking further research on both PM2.5 and O3.

In this study, a high temporal-spatial resolution emission inventory of
commercial cooking was firstly developed based on the realistic activity
levels adopted from the online oil fumes monitoring (OOFM) system in
Shunde, a famous gastronomic district with developed catering industries
in the Pearl River Delta (PRD) region, China. Then the coupled modeling
systemof theWeather Research and Forecasting (WRF)model and Commu-
nity Multiscale Air Quality (CMAQ) model was applied to verify the accu-
racy of the emission inventory. The tool for Model Attainment Test:
Community Edition (SMAT-CE) (Li et al., 2019), together with the air pol-
lutants monitoring data, was subsequently used to fuse the simulation re-
sults to explore the impact of commercial cooking on ambient PM2.5 and
O3. The method and the results of this study will be beneficial to
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understanding the emission characteristic of commercial cooking and fur-
ther provide a scientific basis for its pollution control.

2. Materials and methods

The technical scheme of this studywas shown in Fig. 1. Firstly, the emis-
sions quantity was estimated by improving the activity level dataset that in-
volved stove heads, working hours and oil fumes gas discharge rate. The
above activity levels were obtained from field investigation and OOFM
data which had been screened based on a well-known anomaly recognition
method named Pauta Criterion (3 sigma criterion). Secondly, the total
emissions were spatially allocated according to the real location of each res-
taurant and canteen and then temporally allocated with the hourly coeffi-
cient from OOFM data to obtain a high-resolution emission inventory
(EIon). Besides, a legacy emission inventory (EIle) was also compiled
based on the 2018 Shunde statistical data and Technical manual for the prep-
aration of city-level air pollutant emission inventory 2017 (Technical Manual).
Thirdly, the WRF-CMAQ platform was utilized to verify the accuracy of
EIon by comparing the simulation results of EIon and EIle. Finally, the simu-
lation result of EIon was fused with the monitoring data through the SMAT-
CE Tool (Huang et al., 2018) to better quantify the impact of commercial
cooking on ambient PM2.5 and O3.

2.1. Online oil fumes monitoring system of commercial cooking and data screen-
ing

The OOFM system, recently popularized in restaurants and canteens in
the developed cities of China, was utilized to automatically detect the con-
centration of cooking emissions and monitor the operational status of puri-
fication equipment and wind turbines 24 h a day. Detailed operation
process and hardware of the OOFM system were given in Section S1 and
Figs. S2 to S4. The OOFM data including monitoring time, operation status
of both purification equipment andwind turbines, and oil fumes concentra-
tion per 10 min for 89 restaurants and 13 canteens in 2018 were collected.
In order to ensure the reliability of monitoring data, regular maintenance of
themonitoring system and cleaning of the detector were scheduled to guar-
antee the normal operation of various components (Fig. S5). The flow ve-
locity in the exhaust duct was also measured 2–3 times by using
calibrated pitot tubes flowmeter (LOOBO, type LB-60) after each mainte-
nance for further calculation of oil fumes gas discharge rate. Besides, the
screening of monitoring data was performed to ensure reliability before
their application in emissions calculation. First, the detected data, corre-
sponding to the system operation status shown as unavailable (NA) and
shutdown, were excluded. Then, the oil fumes concentration data detected
during systemoperation and shutdownwas separatelyfiltered based on the
Pauta Criterion (Li et al., 2020c; Liu et al., 2018c; Zhao et al., 2018). Data
that deviated more/<3-fold standard from the mean were removed, and
the corresponding information including switching state and operating cur-
rent of purification equipment and wind turbines were also removed.

2.2. Development of emission inventories without and with online oil fumes mon-
itoring data

A legacy emission inventory (EIle) including VOCs, PM2.5, PM10, black
carbon (BC) and organic carbon (OC) emissions of commercial cooking
for 2018 in Shunde was developed based on the Technical Manual without
OOFM data. The calculation method of annual emissions was given in
Section S2. The emissionswere spatially allocated into grid cells with a hor-
izontal resolution of 1 km×1 km according to the population distribution.
The temporal allocation was performed by referring to the hourly and daily
coefficients in the TechnicalManual; monthly coefficients were assumed the
same (1 divided by 12, 0.083) for each month since referable values were
not provided in the Technical Manual.

The emission inventory of commercial cooking incorporating OOFM
data (EIon) was established using a bottom-up method. Except for the
OOFM data mentioned in Section 2.1, the activity levels were also taken



Fig. 1. The technical scheme for impact assessment of commercial cooking on PM2.5 and O3 with online data-assisted emission inventory.
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from official statistical data and field investigations. Basic information, in-
cluding unit name, location, seating capacity, business type, business
scope, business registration status, date of establishment and date of latest
business status change of all the restaurants and canteens in Shunde district,
was obtained from the official statistical data. The scale of each restaurant
or canteen was classified by its seating capacity (≤75, 76–250 and ≥251
correspond to small, medium and large business scales, respectively)
(Guangdong Food and Drug Administration, 2010). A field investigation
was conducted on 397 typical restaurants selected in proportion to restau-
rant scales as well as all the canteens to assess important information in-
cluding stove heads, installation and maintenance of purification
equipment. Significantly, the restaurants and canteens with OOFM systems
were also investigated. The sample size of investigated restaurants could
make the anticipation error <5% under the premise of 95 % confidence in-
terval, which met the statistical requirements (Wang and Ji, 2020). Specific
values of activity levels were shown in Table S1.

The annual commercial cooking emission estimations were made fol-
lowing Eq. (1). The removal efficiency of oil fumes was not adopted in
this study: on the one hand, there was a lack of effective purification equip-
ment inmost small restaurants according to our investigation (Table S1); on
the other hand, the lack of regular cleaning and maintenance of installed
purification equipment (Fig. S6, Table S1) was widespread in most large
and medium restaurants, resulting in the significant decline of removal ef-
ficiency in the real world (Lin et al., 2021).

Ei ¼ ∑
n
EFi � Nn � Vn � Tn � 10 � 9 (1)

where,
i is one of the five pollutants (VOCs, PM2.5, PM10, BC and OC).
n is the total number of restaurants/canteens.
E is the emissions (t/a) of pollutant i.
EF is the emission factor (mg/m3) for five pollutants of cooking listed in

the Technical Manual. The values were 5.60, 6.40, 8, 0.13 and 4.48 for
VOCs, PM2.5, PM10, BC and OC, respectively.
3

N is the number of stove heads. For investigated restaurants/canteens,
the N values were their actual number of stove heads. For those
uninvestigated restaurants/canteens with large, medium and small scales,
respectively, the N values were represented by the averaged number of
stove heads (Eq. (S2) in Section S3) corresponding to their self-business
scales.

V is the oil fumes gas discharge rate of each stove head (m3/h). For res-
taurants/canteens with the OOFM system, the V values were obtained by
dividing the measured oil fumes gas discharge rate by the number of
stove heads (MDRSH) in each restaurant/canteen. For restaurants/canteens
without OOFM system, the V values were represented by the averaged
MDRSH (Eq. (S3) in Section S3) corresponding to their self-business scale
(large, medium and small scale), respectively.

T is the annual working hours (h/a). For restaurants/canteens with
OOFM system, the T values were the annual working hours of purification
equipment of each restaurant/canteen in 2018. For restaurants/canteens
without OOFM system, the T values were represented by the averaged
working hours (Eq. (S4) in Section S3) corresponding to their self-
business scale (large, medium and small scale), respectively.

Improving the accuracy of temporal and spatial distribution is favorable
for reducing the uncertainty of the developed high-resolution emission in-
ventory, thereafter improving the model performance. In this study, the
commercial cooking emissions were spatially aggregated onto the grids
with 1 km × 1 km resolution in accordance with the realistic geographic
coordinate of restaurants and canteens. The monthly, daily (within a
week) and hourly profiles were obtained from the oil fumes concentration
in OOFM data and then applied to the temporal allocation of the gridded
emissions. Taking monthly profile as an example, we processed the calcula-
tion of temporal profiles as the following three steps:

(1) First, the monthly means for each restaurant/canteen with OOFM data
were calculated based on its respective oil fumes concentration.

(2) Then, the monthly means were standardized by normalization method
(Liu et al., 2019) to eliminate magnitude differences among restau-
rants/canteens.

(3) Last, the median value of the standardized monthly means in all the



Fig. 2. (a) 2018 commercial cooking emissions from legacy (EIle) and OOFM data-
assisted emission inventories (EIon) in Shunde district, unit: ton/annually (t/a).
(b) The outermost doughnut represented the proportion of VOCs emissions from
large, medium and small restaurants and canteens in EIon, and the innermost
doughnut represented the proportion of VOCs emissions from large, medium and
small registered catering service businesses (both restaurants and canteens, RCSB)
in the EIle.

Table 1
The activity levels of different business scales restaurants and canteens for 2018 in
EIle and EIon.

Scale Proportion
(%)

Stove
heads

Working
hours (h)

Oil fumes
gas

discharge
rate

(m3/h)

EIona

Restaurants
Large 8.51 9.2 2464 2878

Medium 14.68 4.7 2102 2245
Small 76.81 2.2 1911 1962

Canteens
Large 38.08 3.8 1649 2615

Medium 46.11 1.9 2008 2142
Small 15.81 1.7 1405 2074

EIlea

Registered catering
service businesses

(both restaurants and
canteens)

Large 7.30 7.1 2000 2500
Medium 22.80 4.0 1800 2000

Small 69.90 1.5 1600 1500

a EIle and EIon were the legacy (EIle) andOOFMdata-assisted emission inventories
(EIon) in Shunde district, respectively.
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restaurants/canteens with large, medium and small scales were intro-
duced as the representative monthly coefficients of corresponding
business-scale restaurants/canteens, respectively. For example, we
chose the median value of the standardized January means in all
large restaurants with OOFMdata to represent the January coefficients
for the large restaurants.

The same processes were also performed to obtain representative daily
(within a week) and hourly coefficients of three business-scales restau-
rants/canteens.

2.3. WRF-CMAQ modeling

In this study, CMAQ model version 5.2 coupled with WRF model ver-
sion 3.9.1 was applied to simulate the base concentration of ambient air
pollutants. The WRF model was used to provide meteorological input for
CMAQ model (Cheng et al., 2012). Four nested domains with grid resolu-
tions of 27 km (d01), 9 km (d02), 3 km (d03) and 1 km (d04) were estab-
lished for WRF-CMAQ modeling as shown in Fig. S7. All nesting domains
were vertically divided into 14 layers with varying thicknesses. The d03 do-
main covered the entire Pearl River Delta (PRD), and the d04 domain fo-
cused on the Shunde district. The entire year of 2018 was selected as the
simulation period. The emission inventories for the d01 and d02 domains
were obtained from the Multi Resolution Emission Inventory for China
(MEIC: http://meicmodel.org). The emission inventories for the d03 and
d04 domains were developed by our research group; the commercial
cooking emissions in Shunde district were made into a separate modeling
input file, and were not included in the inventory of d04 domain
(Table S2). The natural emissions for four nesting domains were acquired
through the Model of Gases and Aerosols from Nature (MEGAN) version
2.10 (Guenther et al., 2012). The initial and boundary conditions for
inner d02 and d03 domains were provided from the upper CMAQ simula-
tion results. The PM2.5 and VOCs source profiles in this study were adopted
from SPECIATE 5.2 database published by the U.S. Environmental Protec-
tion Agency (https://www.epa.gov/air-emissions-modeling/speciate). A
3-day spin-up period was performed tominimize the initial condition influ-
ences. Detailed options for WRF and CMAQ configurations were given in
Table S3.

The relationship between simulated and observed data at air quality
monitoring stations was constructed using the eVNA algorithm in the
SMAT-CE Tool (http://www.abacas-dss.com/abacas/Software.aspx) (Li
et al., 2019; Wang et al., 2015) and then applied to adjust the grid simula-
tion result (Section S4). The observed data of six national air quality moni-
toring stations and eight local air quality monitoring stations (Fig. S7) were
obtained from the Guangdong Environmental Quality platform (http://
113.108.142.147:20061/StationStatus/AppCheck) and Shunde Branch of
Foshan Municipal Ecology and Environment Bureau (https://hycx-gd.cn/
AqiShunDe/), respectively. Casele and Caseon, two emission scenarios of
commercial cooking estimated using Technical Manual and OOFM data, re-
spectively, were compared to evaluate themodel performance of theOOFM
data-assisted emission inventory. In addition, we performed two zero-out
scenarios where the all anthropogenic emissions (Casean) and commercial
cooking emissions in Shunde district (Casecc) were turned off, respectively.
The differences in the amended results by SMAT-CE Tool between these
two zero-out and Caseon scenarios were quantified to represent the contri-
bution of local commercial cooking emissions to ambient PM2.5 and O3

(Eqs. S10 to S11 in Section S6).

3. Results and discussion

3.1. Emission inventories of commercial cooking

The legacy (EIle) and OOFM data-assisted (EIon) emission inventories of
commercial cooking in Shunde district for the year 2018 were summarized
in Fig. 2(a). The annual emissions of VOCs, PM2.5, PM10, BC and OC
4

calculated with OOFM data were 1264.37 t, 1445.00 t, 1806.25 t, 29.35 t
and 1011.50 t, respectively, which were nearly 1.75 times that of those
from EIle. This increase was mostly attributed to the updated activity levels.
As mentioned in Section 2.2, the real-world activity levels, including stove
heads, working hours and oil fumes gas discharge rate, were collected sep-
arately from field investigation, OOFM data and in-situ measurement. It
was found that the averages of the above three parameters for small, me-
dium and large restaurants were 1.12–1.45 times larger than the recom-
mended values in the Technical Manual (Table 1), respectively, which
mainly came from the combined influence of well-developed catering

http://meicmodel.org
https://www.epa.gov/air-emissions-modeling/speciate
http://www.abacas-dss.com/abacas/Software.aspx
http://113.108.142.147:20061/StationStatus/AppCheck
http://113.108.142.147:20061/StationStatus/AppCheck
https://hycx-gd.cn/AqiShunDe/
https://hycx-gd.cn/AqiShunDe/
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industry and rapid growth of take-out industry (Shangguan, 2019) in
Shunde district.

Except for the activity levels, the distribution of business scales was also
an important factor in emission estimations. Fig. 2(b) listed the proportion
of VOCs emissions from large, medium and small restaurants and canteens
in EIon and registered catering service businesses in EIle, respectively. The
registered catering service businesses (RCSB) were the sum of restaurants
and canteens. The emission distribution of three kinds of restaurants in
EIon was inconsistent with that in EIle; the VOCs emissions from small and
medium restaurants were the highest and lowest in EIon, respectively,
while this was the opposite in EIle. Comparedwith the available proportion
of business scale for 2007 applied in EIle, the ratio of small restaurants was
significantly increased; this is because the development of the take-out in-
dustry led to the increase of small restaurants.

Considering the differences in cooking characteristics between canteens
and restaurants, the emissions of canteens were considered separately from
restaurants based on the realistic activity levels for thefirst time in EIon. The
emissions of VOCs, PM2.5, PM10, BC and OC from canteens were 76.52 t/a,
87.46 t/a, 109.33 t/a, 1.77 t/a and 61.23 t/a, respectively, accounting for
nearly 6 % of those in EIon. Notably, the scale distribution of canteens
was completely different from that of restaurants; there were greater num-
bers of medium and large canteens and fewer small canteens. In addition,
the average stove heads and working hours of canteens were generally
lower than the recommended values in EIle (Table 1). One exception is
that the average working hours of medium canteens from OOFM data at
2008 h was higher than that from Technical Manual at 1800 h; this was be-
cause two (C9 and C10, Table S1) of the six medium canteens with OOFM
data belong to the police station and hospital respectively with up to 24
working hours.

These results implied that the activity levels based on OOFM data and
related statistical data were more favorable to capture the real-world emis-
sion characteristics of restaurants and canteens. For instance, compared
with the unified working hours recommended in the Technical Manual,
our statistics for large, medium and small restaurants all showed increasing
trends, while that of small and large canteens decreased significantly. Obvi-
ously, calculating the emissions uniformly according to the recommended
values would result in the overestimation of the canteens and underestima-
tion of the restaurants, respectively, increasing the uncertainty of the esti-
mations. Hence, developing the emission inventory based on realistic
monitoring data is beneficial to improve the accuracy of emission estima-
tions with more local characteristics, accordingly providing sound support
for the development of targeted control measures.
Fig. 3. (a): Population density-based spatial distributions of PM2.5 emissions from regis
Coordinate-based spatial distributions of PM2.5 emissions from restaurants and can
monitoring stations. RG: Ronggui, SG: Sugang. The black triangles represented local a
Longjiang, BJ: Beijiao, LC: Lecong, CC: Chencun.

5

3.2. Spatial and temporal characteristic analysis

Taking PM2.5 as a representative pollutant, we illustrated the spatial dis-
tributions of restaurants and canteens emissions in EIon with a resolution of
1 km× 1 km in Fig. 3(b-c). In this study, owing to the updated spatial pro-
files based on the realistic coordinate, the gridded emissionsmanifested ob-
vious spatial variability that more accurately reflected the real emissions
pattern. Obviously, the emissions of VOCs and PM2.5 from restaurants
were spatially clustered, which was consistent with the pattern of recrea-
tional places (including shopping malls, chess rooms, teahouses, hair sa-
lons, theaters, etc., Fig. S8). The emissions of VOCs and PM2.5 from
canteens were concentrated in Ronggui and Daliang which were defined
as the subsidiary administrative center with many institutions and schools,
and those in the remaining eight towns were concentrated around local
governments (Fig. S8). By comparison, the emissions of commercial
cooking in the legacy version were allocated spatially using the population
density as the gridding surrogates (Fig. 3(a)), and they failed to capture the
hotspot since the population density was unable to reflect the extent where
restaurants and canteens congregate accurately.

Fig. 4 illustrated the average monthly, daily (within a week) and hourly
variations of commercial cooking for which temporal profileswere updated
from the online oil fumes concentration. Overall, the updated temporal co-
efficients varied significantlywith the recommended values in the Technical
Manual except for daily (within a week) coefficients for restaurants, and
there were also obvious differences in the temporal distribution between
restaurants and canteens. As for themonthly distribution (Fig. 4(a)), the av-
erage monthly coefficients for restaurants in EIon were distributed in the in-
terval of 0.07–0.09, showing a relatively smooth monthly variation. In
contrast, the monthly emissions of canteens varied considerably, with sig-
nificant declines in February, July and August. One possible reason for
this was the long vacation during the Spring Festival in February and the
summer vacation in July and August of the school.

As for the daily distribution within the week (Fig. 4(b)), the average
emissions of restaurants varied a little fromMonday to Sunday, resembling
that in the EIle. However, significant fluctuation occurred in the emissions
trend of canteens. More interestingly, the opposite weekend effect was
demonstrated between restaurants and canteens, of which the emissions
were increased slightly and sharp slump, respectively. Most canteens are lo-
cated within schools and business buildings (e.g., schools, kindergartens
and administrative institutions), and therefore have reduced emission
over weekends.

As for the hourly distribution (Fig. 4(c)), the emissions of restaurants
had a trimodal distribution with peaks at 10:00, 12:00 and 19:00 (Beijing
time), while that in EIle peaked at 7:00, 12:00 and 19:00 to 20:00 (Beijing
time) and stayed stable in the remaining hours. The peak at 10:00 may be
tered catering service businesses (including restaurants and canteens) in EIle. (b-c):
teens in EIon. The black five-pointed stars represented the national air quality
ir quality monitoring stations. JA: Junan, XT: Xingtan, LL: Leliu, LJa: Lunjiao, LJb:



Fig. 4.Monthly (a), daily (within aweek) (b) and hourly (c) temporal coefficients calculated based on theOOFMdata for three types (large,medium and small) of restaurants
and canteens. The temporal profiles of EIle were obtained from the Technical Manual, where the legacy monthly profiles were not provided.
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attributed to the fact that restaurants need to prepare in advance to meet
the high consumer demand at lunchtime (12:00, Beijing time). Compared
with that in restaurants, the average hourly emissions from large, medium
and small canteens peak earlier at 8:00, 9:00 and 10:00 (Beijing time), re-
spectively. Because the cooking in canteen should be completed ahead to
facilitate the internal staff and students dining on time.

These results illustrated strong spatial and temporal variabilities of com-
mercial cooking emissions across spatial and multi-scale temporal alloca-
tion. The restaurant emissions were concentrated in the areas with high
density of urban activities. As to the temporal allocation, the low emissions
of canteens during summer and winter vacation, the opposite weekend
emission effect between restaurants and canteens and the beforehand emis-
sions in the morning of both restaurants and canteens were captured and
first reported assisted with the OOFM concentration. The hourly variabil-
ities during peak hours were underestimated by the legacy values in Techni-
cal Manual, while the weekend variabilities of canteens were significantly
overestimated. Thereout, the coordination-based spatial allocation and
OOFM concentration-assisted temporal allocationwere conducive to reveal
more detailed spatial-temporal emission patterns of commercial cooking,
improving the estimation accuracy of spatial and temporal emissions.

3.3. Comparison of the simulation result based on legacy and OOFM data-
assisted emission inventories

TheWRF-CMAQmodeling system was utilized to simulate the ambient
O3 and PM2.5 concentrations based on the legacy and OOFM data-assisted
emission inventories, respectively. To evaluate the model performance,
the original simulation results from the WRF-CMAQ modeling system of
Casele and Caseon were compared with O3 and PM2.5 monitoring data in
two national air quality monitoring stations (NAQMS) located in the
emission-updated areas, Ronggui (RG) and Sugang (SG). The descriptions
of statistical indicators including normalizedmean bias (NMB) and correla-
tion coefficient (R) and associated evaluation results were given in
Section S5 and Tables S4 to S5, respectively. The verification of time series
was driven by the simulation of Caseon and the monitoring data as demon-
strated in Figs. S9 to S10.

Overall, the EIon-based modeling system was more performable in the
PM2.5 andO3 simulation at two stations. Taking SG as an example, although
the PM2.5 simulation in both Caseon (modeling study based on the EIon) and
Casele (modeling study based on EIle) showed a positive correlation
(monthly R > 0.41) with observations, the monthly R values in Caseon
were slightly higher than that in Casele, indicating that the hourly varia-
tions were more reasonably captured by the EIon-based modeling system.
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The NMB values for PM2.5 in these two cases ranged from −12.17 % to
9.35 %, meeting the criteria (NMB ≤ ± 15%) recommended by U.S.
Environmental Protection Agency et al. (2007). Notably, both these two
cases showed underestimation for PM2.5 simulation in months except Feb-
ruary and December, but the underestimation was slightly lower in Caseon
than that in Casele. This is because the elevated PM2.5 concentrations
caused by the increased PM2.5 emission from commercial cooking in
emission-updated areas were considered in Caseon.

The high R and negative NMB for O3 simulation were found in both
Caseon and Casele, indicating the simulated O3 time series was acceptable
but underestimated overall, especially at night. Differing from that for
PM2.5 simulation, the discrepancies between the modeling performance in
Caseon and Casele were relatively smaller for O3, implying the improvement
of EIon in O3 simulation was less obvious than that in PM2.5 simulation. One
major reason is that the regional emissions and intraregional transport
played an important role in O3 formation in Shunde district (Fang et al.,
2021; Yang et al., 2019), while the local precursor emissions including ei-
ther commercial cooking or other important sources had amuch smaller in-
fluence on ambient O3. In general, the simulated PM2.5 and O3 in Caseon
were closer to observations by updating the magnitudes and temporal-
spatial characteristics of local commercial cooking emissions in EIon.

3.4. Impact assessment of commercial cooking on PM2.5 and O3

Exploring the impact of commercial cooking on the ambient atmo-
spheric environment is conducive to air pollution control. The contribution
of commercial cooking to ambient PM2.5 and O3 at RG and SG (Fig. 5) was
calculated as the differences in amended PM2.5 and 90th percentile of the
daily maximum 8-h average O3 (O3-8h-90per) concentrations that driven
from the SMAT-CE Tool betweenCaseon and Casecc, representing the reduc-
tion of PM2.5 and O3-8h-90per concentration by eliminating local commer-
cial cooking emissions. The contribution proportion of commercial cooking
in local anthropogenic emissions was systematically accessed by the
amended simulations driven from the SMAT-CE Tool under Caseon, Casecc
and Casean (Fig. S12).

The annual contributions of commercial cooking to PM2.5 concentra-
tions at RG and SG were 1.23 and 1.27 μg/m3, respectively. Interestingly,
the contribution exhibited obvious differences in seasons due to the corpo-
rate influence of seasonal monsoon climate and local commercial cooking
emissions. Because of the prevailing northerly winds in autumn and winter
(Fig. S11(e), Fig. S11(g)) and the intensive emissions in the eastern and
northern Ronggui, the contribution of commercial cooking to PM2.5 in au-
tumn (1.37 μg/m3) and winter (1.70 μg/m3) at RGwas significantly higher



Fig. 5. Seasonal and annual contribution concentrations of commercial cooking to PM2.5 (a) and 90th percentile of the daily maximum 8-h average O3 (O3-8h-90per) (b) in
Shunde district that obtained by subtracting the corresponding concentrations of Caseon from Casecc.
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than that in spring (0.82 μg/m3) and summer (0.91 μg/m3). However, an
opposite trend was shown at SG, where the contribution in spring and sum-
mer was slightly higher than that in autumn and winter because southerly
and easterly winds prevail in spring and summer (Fig. S11(b), Fig. S11
(d)) and commercial cooking emissions are higher in these two directions
around SG. Similar seasonal differences also occurred in the contribution
proportion of commercial cooking in local anthropogenic emissions to
PM2.5 as shown in Fig. S12. The annual and seasonal contribution propor-
tion of commercial cooking at two stations ranged between 20 % - 28 %
and 19 % - 28 %, respectively, sharing a similar result with that in the
case study of Patras, Greece conducted by Siouti et al. (2021), in which
the cooking organic aerosol contributed 14 % of PM2.5 in the city center,
proving a non-negligible impact of local commercial cooking emissions
on PM2.5. On the contrary, the contribution of commercial cooking to O3
Fig. 6. Seasonal and annual hourly contribution concentration
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concentrations was nearly negligible in both two sites. On the one hand,
as the aforementioned explanation, Shunde was a typical regional
emission-affected area (You et al., 2017), implying less contribution of
local emissions on O3 formation; on the other hand, the source profiles of
SPECIATE 5.2 used in this simulation were insufficient to represent the
emission characteristics of local commercial cooking because there were
significant differences in the emission characteristics of the oil fumes be-
tween Western and Chinese cooking activities, especially commercial
cooking. As such, the variation of local commercial cooking emissions
had less effect on its O3 formation.

Fig. 6(a) showed the hourly contribution of local commercial cooking
emissions to annual and seasonal ambient PM2.5 concentrations. A peak
contribution was predicted at 18:00–20:00 (Beijing time) in all four sea-
sons, whichwas consistent with the peak dining time (18:00–20:00, Beijing
of commercial cooking to ambient PM2.5 (a) and O3 (b).
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time) of restaurants in Fig. 4(c). The annual contributions to PM2.5 at RG
and SG also peaked at 18:00–20:00 (Beijing time), with the highest contri-
bution of 4.00 μg/m3 and 4.80 μg/m3, respectively. Besides, it was found
that the intensive emissions at lunchtime of restaurants and breakfast
time of canteens in Fig. 4(c) did not cause a corresponding obvious increase
in PM2.5 concentration, which is probably because of the relatively favor-
able atmospheric diffusion conditions at midday. The hourly contribution
of commercial cooking emissions to both seasonal and annual O3 was
much lower than that to PM2.5, with the highest contribution only at
0.083 μg/m3 (RG) and 0.082 μg/m3 (SG), respectively, furtherly proving
that the impact of local commercial cooking emissions on O3 is ignorable
overall.
Fig. 7. Seasonal and annual spatial distribution of local commercial cooking contributio
(O3-8h-90per) (f-j).
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The spatial distribution of local commercial cooking emission contribu-
tion to ambient PM2.5 and O3 was illustrated in Fig. 7(a-e) and (f-j). The dis-
tribution of high contribution to PM2.5 was consistent with the spatial
allocation of commercial cooking emissions in Fig. 3, which was concen-
trated around each monitoring station, suggesting that the commercial
cooking emissions exert a more noticeable impact on its nearby area.
Among different monitoring stations, there was little difference in the con-
tribution to PM2.5 concentrations. The overall contribution concentration in
winter was higher than that in other seasons, with the highest contribution
of 5.93 μg/m3, whichmay be related to the poor diffusion condition in win-
ter. As for the O3, the emissions of commercial cooking in the southern and
eastern Shunde contributed the most in spring, summer and winter, respec-
tively. However, compared with PM2.5, the distribution of high commercial
n to ambient PM2.5 (a-e) and 90th percentile of the daily maximum 8-h average O3
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cooking contribution to O3 was more dispersed and the maximum grided
contribution was 2.08 μg/m3. These results again emphasized the local im-
pact of commercial cooking emissions on PM2.5 concentrations, whereas its
impact on O3 was not as significant as on PM2.5 in this study.

4. Conclusions

In this case study, the potential of using online oil fumes monitoring
data together with the official statistical and investigation data to develop
a high-resolution emission inventory of commercial cooking was demon-
strated for the first time. The OOFM data-assisted emission inventory was
then implemented into the WRF-CMAQ coupled modeling to verify the im-
provement effect and accordingly quantify the contribution of local com-
mercial cooking emissions to ambient PM2.5 and O3.

The OOFM data-assisted emission inventory can not only capture more
detailed emission characteristics for commercial cooking but also be bene-
ficial to improving simulation performance. The discrepancies in the emis-
sions between our estimations and the legacy version reflected the well-
developed catering industry and the rapid growth of the take-out industry.
Regarding temporal-spatial variations, the major improvement in the study
was to develop the temporal-spatial surrogates with a gridded resolution of
1 km at multi-temporal scales based on the realistic coordination of each
restaurant and canteen and the OOFM data. High emissions were mainly
agreed with block distributions around air monitoring stations. Different
monthly, daily (within a week) and hourly variations were discovered for
restaurants and canteens emissions, in which the low emissions of canteens
during winter and summer vacations, the opposite weekend effect between
restaurants and canteens and the beforehand emissions in the morning of
both restaurants and canteens were all first reported. With the renewal of
both emissions magnitude and temporal-spatial surrogates, the NMB and
R of both PM2.5 andO3 in the EIon-based simulation scenariowere generally
improved, demonstrating the region-wide improvement on simulationwith
the application of OOFM and other realistic data. The simulation results
proved a more pronounced impact of commercial cooking emissions on
PM2.5 in nearby areas but a nearly negligible impact on O3, indicating
that targeted control measures should be implemented in specific regions
to reduce the local commercial cooking emissions for continuous reduction
of local PM2.5 concentrations.

However, there were still two limitations in our study. First, owing to
the potential inaccuracy of OOFM measurement caused by the light-
scattering principle, the use of OOFM data was limited to the statistics of
working hours and the temporal variation of emissions, which was still
not enough for a reliable emission inventory. The advanced application of
OOFM data in inventory compilation, such as the use of corrected online
oil fumes concentration by in-situ monitoring to estimate pollutant emis-
sions directly, will further improve the estimate emissions. Second, the
lack of a local model-ready VOCs source profile specifically for cooking
emissions could be responsible for the low contribution of local commercial
cooking to O3. Hence, the compilation of this profile has been listed in our
subsequent plan to further improve the performance of PM2.5 and O3 simu-
lation.

To the best of our knowledge, this is the first study to compile a high-
resolution emission inventory and explore detailed emission characteristics
of commercial cooking assisted with OOFMdata, providing a new guide for
future accuracy improvement of commercial cooking emission inventories.
Ourfindings can be used as an important scientific basis for the emission re-
duction regulations on commercial cooking.
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Thirteenfigures,five tables and additional information on (1) The struc-
ture of the online oil fumes monitoring system; (2) Method of estimating
emissions of commercial cooking without OOFM data; (3) Calculation
method of average number of stove heads, oil fumes gas rates and working
hours corresponding to the restaurants/canteens of large, medium and
small scale; (4) The calculation of SMAT-CE Tool; (5) Formulas of statistic
indicators for theWRF-CMAQvalidation; (6) Formulas of estimating contri-
bution concentration and proportion of local commercial cooking emis-
sions on ambient PM2.5 and O3 were provided in the Supplementary
Material.
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